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Abstract
We analyse the effects of the impermeability constraint on the equilibrium
shapes of a three-dimensional vesicle hosting a rigid inclusion. A
given alteration of the inclusion and/or vesicle parameters leads to shape
modifications of different orders of magnitude, when applied to permeable
or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks
the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped
or stomatocyte-like vesicles.

PACS numbers: 87.16.Dg, 87.15.He
Mathematics Subject Classification: 74L15, 74K15, 74B15

1. Introduction

Proteins embedded in biological membranes strongly influence both the geometric and
the elastic properties of the hosting membranes. The rigid inclusions are able to induce
vesicle budding [1–3], while the interplay between the protein–membrane interaction and the
spontaneous curvature may yield a loss of regular equilibrium configurations [4]. Moreover,
the elasticity of the hosting vesicle induces a membrane-mediated interaction that has been
widely studied both experimentally [5] and theoretically, in the cases of planar [6, 7], quasi-
planar [8–10] and quasi-spherical vesicles [11].

In this paper we focus our attention on the equilibrium shapes of a three-dimensional
vesicle hosting a rigid inclusion, and in particular on the effects of the permeability properties
of the vesicle. In fact, a given slight perturbation applied to a quasi-spherical vesicle may
induce quite different changes on the resulting equilibrium shape, depending on whether
the enclosed volume of the vesicle is constrained or not. More precisely, an O(ε) relative
perturbation of the external parameters induces an equivalent O(ε) modification in the shape
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function of a permeable vesicle, but a stronger O(
√

ε) relative perturbation if the enclosed
volume is kept fixed. Furthermore, the volume constraint yields a multiplicity of stationary
equilibrium shapes, and it leads to the abandonment of the spherical shape towards either
pear-shaped or stomatocyte-like vesicles.

Whether the volume enclosed by the vesicle may be constrained or not depending on both
the chemical properties of the aqueous solution which surrounds the vesicle, and the time scales
on which the (meta)equilibrium shapes are observed [12, 13]. When the water is essentially
free of molecules that cannot permeate the bilayer membrane, no volume constraint stands.
In contrast, when some of the molecules in the solution are unable to permeate the bilayer,
the resulting osmotic pressure gives rise to an enclosed-volume constraint. However, even in
this latter case, on long time scales water molecules succeed in permeating the membrane.
Eventually, the vesicle reaches its true equilibrium shape, which minimizes the free energy
with respect to the enclosed volume.

Throughout our development, we will model proteins as rigid inclusions, and we will
assume that the protein–membrane interaction simply fixes the contact angle, i.e. the angle the
vesicle normal determines with the inclusion plane [14, 8, 15]. However, only small
modifications need to be applied to our results to take into account interactions which determine
the contact curvature instead of the contact angle [16–18]. More drastic changes, though
substantially the same mathematical setting, require the weak anchoring case [15, 19, 4],
in which the inclusion–vesicle interaction provides an additional term in the free-energy
functional, instead of a fixed boundary condition.

We describe vesicle elasticity through Helfrich’s (spontaneous curvature) model [20, 21].
The free-energy functional is then

F[�] := κ

∫
�

(H − σ0)
2 da (1.1)

where � is a closed surface describing the vesicle shape, H denotes the mean curvature along
�, κ is the bending energy and σ0 the spontaneous curvature. In the minimizing procedure
at fixed area (and possibly fixed volume) we replace (1.1) with the effective free-energy
functional

Feff[�] := κ

∫
�

(H − σ0)
2 da + λ(Area(�) − A) + [[µ(Vol(�) − V )]]. (1.2)

The Lagrange multipliers λ and µ have the physical meaning of surface tension and pressure
difference and the brackets are there to remind us that the volume constraint will not always be
applied. In (1.2) the area constraint has been inserted as a global, instead of a local constraint.
We recall that, in the absence of external forces, both choices are equivalent [22].

The Euler–Lagrange equation associated with the functional (1.2) is the shape equation
[22, 23]:

κ
[
�sH + 2H(H 2 − K) + 2σ0K − 2σ 2

0 H
] − 2λH − [[µ]] = 0 (1.3)

where �s, the tangential divergence of the tangential gradient, is the Laplace–Beltrami operator
on � and K denotes the Gaussian curvature along �.

The plan of the paper is as follows. In the next section, we introduce the surface
parametrization and we derive the conditions satisfied by spherical and quasi-spherical shapes.
In section 3 we analyse the vesicle shapes obtained in the presence of the area constraint alone
(i.e. the long-time equilibrium vesicle shapes). Section 4 is devoted to the peculiar role played
by the volume constraint. In section 5 we review and discuss our results.
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Figure 1. Cross-section of a three-dimensional vesicle embedding a conical inclusion of base
radius a. The tangent to the generating curve at the contact points determines a fixed angle ψ with
the inclusion plane.

2. The model

Let us consider a vesicle that embeds an inclusion which we model as a symmetric conical
frustum of negligible height, base radius a and apex angle ψ . The inclusion–vesicle interaction
fixes the angle between the vesicle normal and the inclusion plane at the contact points to be
equal to

(
π
2 − ψ

)
. Figure 1 illustrates the geometric setup of the model. For a more detailed

description of the inclusion–vesicle interactions and their modelling we refer the reader to the
paper by Biscari and Rosso [4].

We restrict our analysis to axisymmetric vesicle shapes and parametrize them in
spherical coordinates centred at a fixed point O, which lies in the inclusion symmetry axis z

(we assume that this is the symmetry axis of the vesicle too, since the inclusion does not upset
the cylindrical symmetry):

P(ϑ, ϕ) − O = r(ϑ) sin ϑ cos ϕ ex + r(ϑ) sin ϑ sin ϕ ey + r(ϑ) cos ϑ ez.

The unit vectors {ex, ey, ez} form an orthogonal basis, with ez parallel to the inclusion axis;
ϑ and ϕ are the polar and azimuthal angles, respectively. The area element, the Laplace–
Beltrami operator, the mean curvature and the Gaussian curvature along � are given by

da = √
g dϑ dϕ �s = 1√

g

[
∂ϑ

(
r sin ϑ√
r2 + r ′2 ∂ϑ

)
+ ∂ϕ

(√
r2 + r ′2

r sin ϑ
∂ϕ

)]

H = 2r3 + 3rr ′2 − r ′3 cot ϑ − r2(r ′ cot ϑ + r ′′)
2r(r2 + r ′2)3/2

and

K = (r sin ϑ − r ′ cos ϑ)(r2 + 2r ′2 − rr ′′)
r sin ϑ(r2 + r ′2)2

where a prime denotes differentiation with respect to the polar angle and g :=
(r2 + r ′2)r2 sin2 ϑ . The spherical parametrization transforms the effective free energy (1.2) as
follows:

Feff[r] = 2π

∫ ϑf

0
(κ(H [r] − σ0)

2 + λ) r
√

r2 + r ′2 sin ϑ dϑ +

[[
2π

3
µ

∫ ϑf

0
r3(ϑ) sin ϑ dϑ

]]
.
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The integration limit ϑf depends on the position of the origin O. We choose to fix O at a
distance �z = (a cot ψ) above the inclusion, which yields ϑf = (π − ψ). This choice
simplifies the attachment condition on the inclusion and the constraint on the direction of the
contact normal, which become

r(ϑf) = a

sin ψ
and r ′(ϑf) = 0. (2.1)

The vesicle is free on its top (ϑ = 0). The boundary conditions therein follow from regularity
requirements on the vesicle shape:

lim
ϑ→0+

r ′(ϑ) = 0 and lim
ϑ→0+

r ′′′(ϑ) = 0. (2.2)

2.1. Internal actions

Let us consider a subsurface �′ ⊆ �, and let n and t respectively denote the normal to � at
a point P ∈ ∂�′, and the tangent to the curve ∂�′. Furthermore, let k := n ∧ t denote the
direction in the tangent plane at P pointing outwards with respect to �′. The internal actions
at P consist in a distributed force f and a distributed torque m, whose densities per unit length
of ∂�′ are

f = [κ(H − σ0)
2 + λ] k − κ

∂H

∂k
n and m = κ(H − σ0)n.

The above equations generalize to three-dimensional vesicles the internal actions derived in
[7] for the two-dimensional case. They show that the surface tension λ may become negative
without giving rise to the collapse of the vesicle, provided that f · k = [κ(H −σ0)

2 +λ] remains
non-negative all along the vesicle. Furthermore, they provide an alternative way of deriving
the free-boundary conditions (2.2). In fact, these conditions are equivalent to the vanishing of
the internal force and torque acting on an infinitesimal cap which surrounds the vesicle top.

2.2. Spherical shapes

The equilibrium shape of a vesicle is a sphere of radius r0, centred at O, whenever the base
radius a0, the apex angle ψ0 and the vesicle area A0 satisfy

a0 = r0 sin ψ0 and A0 = 4πr2
0 cos2 ψ0

2
. (2.3)

If we eliminate r0 from equations (2.3)1 and (2.3)2, we obtain

πa2
0 = A0 sin2 ψ0

2
.

If, in addition, the vesicle is impermeable, the enclosed volume V0 must match

V0 = 4

3
πr3

0 cos2 ψ0

2
+

1

3
πa2

0r0 cos ψ0 = πa3
0

6

cos ψ0

2

sin3 ψ0

2

(2 − cos ψ0).

In particular, the area, enclosed volume and the apex angle must obey

υ0 := 36π
V 2

0

A3
0

= (2 − cos ψ0)
2 cos2 ψ0

2
. (2.4)

We remark that for any value in υ0 ∈ [1, 2] (the end cases corresponding to the cases of a
sphere and a half sphere), there is exactly one value of ψ0 ∈ [

0, π
2

]
that satisfies (2.4).
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2.3. Quasi-spherical shapes

We now assume that some of the control parameters a, ψ , A (and possibly V ) are slightly
perturbed with respect to their values satisfying (2.3) and (2.4). In this case, we look for
solutions of the shape equation (1.3) that represent a perturbation of a sphere:

r(ϑ) = r0(1 + ε1(ϑ) + o(ε)). (2.5)

Consistently, we also expand the Lagrange multipliers by perturbing their ‘spherical’ values

λ = κ

r2
0

(�0 + ε�1 + o(ε)) and µ = 2κ

r3
0

(η0 + εη1 + o(ε)). (2.6)

In (2.6), the normalizing factors κ and r0 have been inserted in order to proceed with the
dimensionless quantities �i and ηi . Furthermore, in order to make the whole shape equation
dimensionless, we define the reduced spontaneous curvature as

ς0 := σ0r0. (2.7)

If we insert (2.5), (2.6) and (2.7) in (1.3), we derive for O(1) the condition

�0 + η0 = ς0(1 − ς0) (2.8)

linking the spherical values of the Lagrange multipliers.
When we push the expansion to O(ε), we obtain a fourth-order linear differential equation

for 1. If we further introduce the variable s := cos ϑ , and perform the substitution
1(ϑ) = �1(cos ϑ), the so-obtained differential equation reads

(1 − s2)2�(4)− 8s(1 − s2)� (3) + [12s2 − 4 + g1(1 − s2)]�(2)− 2g1s�
(1) + g0�

= −4(�1 + η1) (2.9)

where

g0 = 2g1 := 4(ς0(2 − ς0) − �0)

and the superscripts denote differentiation with respect to s. Equation (2.9) is an
inhomogeneous fourth-order Legendre differential equation. Its general solution can be
expressed in terms of Legendre functions of the first and second kind as

�(s) = −4(�1 + η1)

g0
+ C1Pν+(s) + C2Qν+(s) + C3Pν−(s) + C4Qν−(s)

where the orders of the Legendre functions are given by

ν± = − 1
2 + 1

2

√
5 + 2g1 ± 2

√
(g1 + 2)2 − 4g0. (2.10)

If we replace g0 = 2g1 in (2.10), we obtain ν± = − 1
2 + 1

2

√
5 + 2g1 ± 2 |g1 − 2|, so that

{ν+, ν−} = {
1, 1

2

(√
1 + 4g1 − 1

)}
.

If we further introduce the notation

ν := 1
2

(√
1 + 4g1 − 1

) = 1
2

(√
1 + 8ς0(2 − ς0) − 8�0 − 1

)
(2.11)

and we finally consider that P1(s) = s, we arrive at the general solution of the linearized shape
equation

1(ϑ) = −4(�1 + η1)

g0
+ C1 cos ϑ + C2Q1(cos ϑ) + C3Pν(cos ϑ) + C4Qν(cos ϑ). (2.12)

Some further investigation will turn out to be necessary in the particular cases ν = 0
(i.e. g1 = 0) and ν = 1 (i.e. g1 = 2). We postpone the analysis of these cases to the
sections below.
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In the following, we will analyse and compare the perturbed equilibrium vesicle shapes
of permeable and impermeable vesicles. The derivation below works when any or even all of
the parameters a, ψ , A or V are varied with respect to their spherical values. However, and
only in order to shorten our presentation, we will henceforth restrict our development to the
case in which only the area, and possibly the enclosed volume, are varied with respect to the
values satisfying (2.3) and (2.4), while the inclusion parameters are kept unchanged. These
are the easiest perturbations to implement experimentally: for example, an area variation in a
biological membrane may be simply induced by adding extra lipid molecules to the membrane
bilayer.

3. Permeable vesicles

When the vesicle is inextensible but permeable, no volume constraint stands. For all practical
purposes, this is equivalent to assuming that the Lagrange multiplier µ vanishes identically.
When this is the case, condition (2.8) reads

�0 = ς0(1 − ς0)

which implies g0 = 2g1 = 4ς0 and

ν = 1
2

(√
1 + 8ς0 − 1

)
. (3.1)

The linear perturbation of the spherical shape becomes

1(ϑ) = −�1

ς0
+ C1 cos ϑ + C2Q1(cos ϑ) + C3Pν(cos ϑ) + C4Qν(cos ϑ). (3.2)

All Legendre functions of the second kind Qν(s) are singular when s → 1−. Thus, the
free-boundary conditions (2.2) require C2 = C4 = 0. The remaining parameters �1, C1 and
C3 can be determined with the aid of the contact conditions (2.1) and the area constraint:

1(ϑf) = 0 ′
1(ϑf) = 0 and 4πr2

0

∫ ϑf

0
1(ϑ) sin ϑ dϑ = �A (3.3)

where �A is the excess area with respect to the spherical value A0. With the aid of (A.2)–(A.4)
conditions (3.3) yield

�1 = ς0C3 cosec2 ψ0[ν cos ψ0Pν−1(−cos ψ0) + (sin2 ψ0 + ν cos2 ψ0)Pν(−cos ψ0)]

C1 = −νC3 cosec2 ψ0[Pν−1(−cos ψ0) + cos ψ0Pν(−cos ψ0)]

and
C3

(ν + 1)(1 − cos ψ0)

[
4(Pν−1(− cos ψ0) − Pν(− cos ψ0))

1 + cos ψ0

− (ν − 1)(ν cos ψ0 + 2)Pν(−cos ψ0) − (ν2 + ν + 2)Pν−1(−cos ψ0)

]
= �A

A0
.

We have already announced that the differential equation (2.9) admits (3.2) as its general
solution only when ν �∈ {0, 1}, that is when the spontaneous curvature is neither null nor equal
to the inverse of the unperturbed radius r0. We will now solve (2.9) in these cases.

When ς0 = 0, the general solution of the homogeneous differential equation associated
with (2.9) is still as in (3.2), with ν = 0. However, and since P0(s) ≡ 1, the particular solution
of the equation is not a constant. By using the method of variation of parameters, and requiring
also the free-boundary conditions (2.2), we find


(ς0=0)

1 (ϑ) = C1 cos ϑ + C3 + �1(3 + 2 lg(1 + cos ϑ)).
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Figure 2. Perturbed shapes of a vesicle hosting an inclusion, when the area is slightly greater
than the area corresponding to a spherical equilibrium solution. The plots correspond to
ψ0 = 0.1π, �A = 0.05A0 and ς0 = 0, 1, 2, 3 (the arrow points towards increasing values
of ς0).

In addition, conditions (3.3) yield

�1 = −C1 sin2 ψ0

2
C3 = C1

[
1 +

(
1 + 2 lg

(
2 sin2 ψ0

2

))
sin2 ψ0

2

]
and

2

(
1 + sin2 ψ0

2
+ 2 tan2 ψ0

2
lg sin2 ψ0

2

)
C1 = �A

A0
.

When ς0 = 1, the particular solution of the differential equation (2.9) is again a constant,
but the solution of the homogeneous equation is not of the form (3.2). If we solve (2.9)
explicitly and use the free-boundary conditions (2.2), we arrive at


(ς0=1)

1 (ϑ) = C1 cos ϑ + C3(cos ϑ lg(1 + cos ϑ) − 1) − �1.

Finally, conditions (3.3) now require

C1 = −C3

(
lg(1 − cos ψ0) − cos ψ0

1 − cos ψ0

)

�1 = −C3

(
1 +

cos2 ψ0

1 − cos ψ0

)
and cos2 ψ0

2
cot2

ψ0

2
C3 = �A

A0
.

Figure 2 shows how the perturbed vesicle shape depends on the spontaneous curvature
for a prescribed area increase (5% with respect to the spherical value), while figure 3 shows
the volume variation induced by �A.

• Since the inclusion is placed at ϑ = ϑf , figure 2 shows that in vesicles characterized by
greater spontaneous curvatures the shape modifications gather away from the inclusion.

• An area increase induces a shape perturbation 1 that does not change sign all along the
vesicle (we will find below that this is not the case when the volume is also constrained).

• Figure 3 shows that the volume increase induced by �A increases monotonically with
�A. However, the remarkable increase in �V that appears when ς0 	 3 is to be linked
with the spontaneous-curvature driven budding transition [24] that is close to occurring.
A detailed analysis of the inclusion’s influence on this transition can be performed only
by studying the nonlinear shape equation (1.3), and will be reported elsewhere [25].
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Figure 3. Volume variation induced by a given area variation in a permeable vesicle hosting an
inclusion as a function of the reduced spontaneous curvature ς0. As in figure 2, ψ0 = 0.1π and
�A = 0.05A0.

3.1. Small inclusions

By using the asymptotic expansion (A.5), it is possible to show that in the small inclusion limit
a 
 √

A0, which implies ψ0 
 1 by virtue of (2.3), the perturbed vesicle shape becomes
independent of ς0

r(ϑ) = r0

(
1 +

�A

A0

1 + cos ϑ

2

)
+ O

(
ψ2

0 lgψ0,

(
�A

A0

)2
)

. (3.4)

Figure 2 shows that when the spontaneous curvature is small, the asymptotic expression (3.4)
is more rapidly approached. In fact, if we compute the volume variation associated with the
perturbed shape (3.4) we obtain

�V

V0
= 3

2

�A

A0
+ O

(
ψ2

0 lgψ0,

(
�A

A0

)2
)

.

Figure 3 confirms that the relative volume variation is closer to the small limit prediction
3
2�A/A0 when ς0 is small.

4. Impermeable vesicles

We now focus on the solutions of the differential equation (2.9) that satisfy both area and
volume constraints, when these geometrical quantities are close to satisfying the spherical
condition (2.4). Leaving aside for the moment the cases ν = 0 and ν = 1 (that turn out to
be meaningless in the impermeable case), the solution of (2.9) is of the form (2.12) with the
following parameters to be determined: C1, C2, C3, C4,�0 (i.e. ν, by virtue of (2.11)), and the
combination (�1 + η1).

4.1. Singular perturbations

The boundary conditions (2.1) and (2.2) may determine the four parameters C1–C4. A problem
arises when we try to determine ν and (�1 + η1) by using the area and volume constraints. In
fact, O(ε) of the above constraints reads∫ ϑf

0
1(ϑ) sin ϑ dϑ = �A

4πr2
0

∫ ϑf

0
1(ϑ) sin ϑ dϑ = �V

2πr3
0

. (4.1)
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It is clearly impossible to satisfy both constraints if

�A �= 2

r0
�V.

From the analytical point of view, the degeneracy of constraints (4.1) stems from the fact that
the first variations of area and volume of a surface are linearly dependent when computed
in a spherical shape. In fact, if we perturb any surface with constant mean curvature H (the
so-called Delaunay surfaces [26, 27]), the area and volume of the resulting surface satisfy [23]

�A = 2H�V.

The area and volume constraints become linearly independent only when the second
variations come into play. Thus, if we are willing to perturb the assigned area and volume to
an arbitrary O(ε), we have to perturb the shape function r(ϑ) to O(

√
ε), as we shall show

next.
We begin by replacing (2.5) by

r(ϑ) = r0
(
1 +

√
ε 1

2
(ϑ) + ε1(ϑ) + o(ε)

)
. (4.2)

The singular perturbation  1
2

is of the form (2.12), with �1 and η1 replaced by their half-order
counterparts � 1

2
and η 1

2
. Correspondingly, the area and enclosed volume of the resulting

vesicle shape are given by

A0 + ε�A = 2π

∫ ϑf

0
r
√

r2 + r ′2 sin ϑ dϑ

= A0 + 4πr2
0

√
ε

∫ ϑf

0
 1

2
sin ϑ dϑ + πr2

0 ε

∫ ϑf

0

(
22

1
2

+ ′2
1
2

+ 41
)

sin ϑ dϑ + o(ε)

(4.3)

V0 + ε�V = 2π

3

∫ ϑf

0
r3(ϑ) sin ϑ dϑ

= V0 + 2πr3
0

√
ε

∫ ϑf

0
 1

2
sin ϑ dϑ + πr3

0 ε

∫ ϑf

0

(
22

1
2

+ 21
)

sin ϑ dϑ + o(ε). (4.4)

Both (4.3) and (4.4) can now be satisfied, provided the functions  1
2

and 1 are such that

∫ ϑf

0
 1

2
(ϑ) sin ϑ dϑ = 0 (4.5)

∫ ϑf

0

[
′2

1
2
(ϑ) − 22

1
2
(ϑ)

]
sin ϑ dϑ = r0�A − 2�V

πr3
0

(4.6)

and ∫ ϑf

0
1(ϑ) sin ϑ dϑ = �V

2πr3
0

−
∫ ϑf

0
2

1
2
(ϑ) sin ϑ dϑ. (4.7)

Equations (4.5) and (4.6) fix  1
2
, as we will show below; then, equation (4.7) allows us to

determine also the next-order correction 1.
Before entering the detailed analysis of equations (4.5) and (4.6), the above result deserves

some remarks:

• Equation (4.2) underlines the most striking effect of the impermeability constraint on
the vesicle: an O(ε) perturbation of the assigned geometrical values induces an O(

√
ε)

perturbation in the vesicle shape.
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• Equation (4.5) is an eigenvalue equation. We have to look for non-trivial (i.e. non-
vanishing) perturbations  1

2
that satisfy it. It will prove to admit a countable infinity of

independent solutions.
• Equation (4.6) is quadratic in  1

2
. We will thus find two, rather than one, possible

perturbed shapes for any non-trivial solution of (4.5). An energy argument will be needed
to identify the preferred perturbation among the double-infinity of possible choices at our
disposal. Both perturbed shapes arising from (4.6) will deserve notice, since they display
two qualitatively different vesicle reactions to the perturbation.

• The quadratic expression in the left-hand side of (4.6) forces the right-hand side
combination (r0�A − 2�V ) to assume only non-negative values. This property is
not peculiar to vesicle theory: it reflects a classical isoperimetric inequality. In fact, for
any closed surface, the ratio A3/V 2 is bounded from below by the value 36π , which is
attained only by a sphere (see, e.g., [28] p 8). Thus, for example, there does not exist a
closed surface with the same enclosed volume as a sphere and smaller area.

4.2. Multiplicity of stationary perturbed shapes

The free boundary conditions (2.2) require that the coefficients of the singular Legendre
functions of the second kind in (2.12) must be null: C2 = C4 = 0. Afterwards, the contact
conditions (2.1), which are linear in the shape function, supply two relations that connect
C1, C3 and

(
� 1

2
+ η 1

2

)
in (2.12). As a result, the leading perturbation  1

2
in (4.2) can be given

in the form:

 1
2
(ϑ) = C3[α(ν, ψ0) + β(ν, ψ0) cos ϑ + Pν(cos ϑ)] (4.8)

with

α(ν, ψ0) = −cosec2 ψ0(ν cos ψ0Pν−1(−cos ψ0) + (sin2 ψ0 + ν cos2 ψ0)Pν(−cos ψ0))

and

β(ν, ψ0) = −ν cosec2 ψ0(Pν−1(−cos ψ0) + cos ψ0Pν(−cos ψ0)).

In order to determine completely the function  1
2
, we have to use (4.5) and (4.6) to derive ν

and C3. Any non-trivial solution of (4.5) possesses C3 �= 0. Thus, we can drop C3 to obtain an
eigenvalue equation in ν, depending only on ψ0. Figure 4 illustrates the numerical solutions
of (4.5). These solutions exhibit the following properties:

• The spontaneous curvature does not enter (4.5). Thus, the stationary shape modifications
of an impermeable vesicle do not depend on ς0, as they did in the permeable case (see
(3.1) and figure 2).

• For any ψ0 ∈ [
0, π

2

]
, there is a countable infinity of values νk(ψ0) satisfying (4.5).

• For any ψ0 ∈ [
0, π

2

]
, the solutions νk(ψ0) are symmetric with respect to ν = − 1

2 .
However, since the symmetric solutions are identical (see (A.1)), we can restrict our
attention to solutions with ν � − 1

2 .
• When ψ0 
 1 (small protein limit), the use of (A.5) allows us to prove that νk tends to

an integer value for any k:

νk(ψ0) = (k + 1) +
k − 1

4
ψ2

0 + o(ψ2
0 ) for any k ∈ N. (4.9)

The shape function thus approaches a linear combination of Legendre functions of integer
order, that is Legendre polynomials. Furthermore, both (4.9) and figure 4 show that only
Legendre polynomials of order equal to or greater than 2 come into play, while only
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Figure 4. Order ν of the Legendre functions entering the perturbation of an impermeable vesicle
shape as a function of the inclusion apex angle ψ0. The graphs display the smallest five numerical
solutions {νk, k = 1, . . . , 5} of equation (4.5).

low-order Legendre polynomials (P0 and P1) entered the small-protein limit of permeable
vesicles (see (3.4)). This yields more drastic shape modifications in the incompressible
case, since Legendre polynomials are more and more oscillating as their order increases.
The expansion of the shape function (in the absence of inclusions) in terms of Legendre
polynomials was first used in [24].

• For any k ∈ N, the functions νk(ψ0) increase monotonically with ψ0, and do not intersect.
• It is possible to prove by direct inspection that ν = 0 and ν = 1 do not solve (4.5) for any

value of ψ0.

Once we have identified the ν-values that satisfy (4.5), we can insert (4.8) in (4.6) to
determine C3, the only remaining free parameter in the singular perturbation  1

2
. We stress

again that,  1
2

being linear in C3, the latter parameter enters quadratically in (4.6). This fact,
on the one hand fixes a sign for the geometrical quantity (r0�A − 2�V ), and on the other
hand implies that, for any k ∈ N with ν = νk(ψ0), there are exactly two values of C3 (one the
opposite of the other) that satisfy (4.6). Thus, for any k ∈ N, there are two possible perturbed
shapes: rk±(ϑ) = r0

(
1 ± √

ε 1
2 ,k(ϑ) + O(ε)

)
.

Only an energy estimate can help us determine, for any ψ0 ∈ [
0, π

2

]
, both the value of νk

and the sign of C3 that minimize the elastic energy. This will be the aim of the remaining part
of this section.

4.3. Energy estimates

4.3.1. Ground state energy. In order to identify which is energetically preferred among
the stationary perturbed shapes determined above, we will now compute their elastic energy.
When we insert (4.2) in the free-energy functional (1.1), and we make use of (4.5)–(4.7), we
obtain

Fk± = 2πκ

∫ ϑf

0
(Hk± − σ0)

2rk±
√

r2
k± + r ′2

k± sin ϑ dϑ

= κ(ς0 − 1)2 A0

r2
0

+ κς0(ς0 − 1)
�A

r2
0

− κς0
r0�A − 2�V

r3
0

+ F (2)
k + o(r0�A,�V )
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Figure 5. Results of the numerical computation of the integral in (4.10), when  1
2 ,k

is given in

(4.8), and ν is the kth solution of equation (4.5). The graphs display the results for k = 1, . . . , 5.

where Fk± denotes the free energy of the kth solution of equation (4.5), with positive or
negative sign for C3, and

F (2)
k = π

2
κ

∫ ϑf

0

[
′2

1
2 ,k

(ϑ)
cos 2ϑ

sin2 ϑ
+ ′′2

1
2 ,k

(ϑ)

]
sin ϑ dϑ (4.10)

is the leading order that may determine k and the sign of C3. However, F (2)
k depends

quadratically on  1
2 ,k , so that the sign of C3 cancels out from it. Thus, the second-order

expansion turns out to be able to identify only the preferred value of νk . A further term in
the free-energy expansion will be needed to complete the determination of the free-energy
absolute minimizer.

Figure 5 shows how F (2)
k depends on k and ψ0: the free energy increases when either

of these increases. In particular, figure 5 proves that the stable perturbed shape for a quasi-
spherical impermeable vesicle corresponds to the solution with the smallest possible order of
the Legendre functions. This is not surprising from the physical point of view, since Legendre
functions wrinkle when their order increases, and these oscillations increase the elastic energy.

4.3.2. Pear-shaped or stomatocytes? We still have to choose the preferred sign for the
parameter C3. Figure 6 shows the deep, qualitative, differences between permeable (a) and
impermeable ((b) and (c)) stationary shapes that arise from the same parameter changes:
�A = 1

10A0 for all the shapes; �V is left free in (a), while it is kept null in (b) and (c).
Permeable vesicles modify their enclosed volume in order to keep an almost-spherical shape.
In contrast, impermeable vesicles move towards pear-shaped or stomatocyte-like equilibrium
shapes [29], depending on the sign of C3.

In order to compare the free energies of pear-shaped and stomatocyte-like vesicles, we
need to push our free-energy expansion further. The next order depends on the third power of
 1

2
and its derivatives: it is O(r0�A,�V )3/2. By making use of the constraint requirements

(4.5)–(4.7), it is possible to obtain

F(ps,st) = κ(ς0 − 1)2 A0

r2
0

+ κς0(ς0 − 1)
�A

r2
0

− κς0
r0�A − 2�V

r3
0

+ F (2)

+F (3)

(ps,st) + o(r0�A,�V )3/2
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(a) (b) (c)

Figure 6. Perturbed shapes for a vesicle embedding an inclusion of negligible size (ψ0 
 1)

when a 10% increase in the vesicle area is imposed (with respect to the value leading to a spherical
shape): (a) shows the equilibrium shape of a permeable vesicle, which is allowed to adapt its
enclosed volume, (b) and (c) refer to an impermeable vesicle when the positive or negative sign
for the parameter C3 is chosen when solving equation (4.5). The inclusion (not visible here) sits
in the bottom end of the vesicle.
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Figure 7. Plots of the functions f (dashed), g (dotted line), introduced in (4.11), and the critical
spontaneous curvature ς0,cr (continuous line), defined in (4.12), all as functions of the apex angle.

where all the terms up to F (2) do not depend on the pear shaped versus stomatocyte choice,
and

F (3)

(ps,st) = ±
(

r0�A − 2�V

r3
0

) 3
2

(f (ψ0) + ς0g(ψ0)). (4.11)

In (4.11), the plus sign corresponds to the pear-shaped vesicle, the minus sign describes a
stomatocyte and ς0 denotes as usual the reduced spontaneous curvature. Plots of the functions
f and g (whose explicit expressions can be found in appendix B, equations (B.2)–(B.3)) are
shown in figure 7. Both f and g are negative for all values of ψ0. Thus, for any positive value
of the spontaneous curvature, the pear-shaped vesicle is the absolute minimizer of the free
energy, whereas the stomatocyte represents only a relative minimum. A transition between
the two stationary shapes can be observed only when negative spontaneous curvatures are
induced; more precisely, the stomatocyte-like phase is preferred if

ς0 < −f (ψ0)

g(ψ0)
=: ς0,cr(ψ0). (4.12)

Figure 7 also shows how the critical value of the reduced spontaneous curvature depends on
the apex angle. In particular, − 6

5 < ς0,cr(ψ0) � − 3
5 for all values of ψ0.
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5. Concluding remarks

In this paper we have analysed how the impermeability constraint may induce singular
stationary vesicle shapes, and how the embedding of an inclusion may vary the vesicle topology,
promoting pear-shaped geometries that anticipate critical phenomena such as budding or
vesiculation [30, 31].

Our analysis has been based on the linearization of the shape equation close to a spherical
shape. This approximation does not allow us to approach the aforementioned transitions,
but in turn yields analytical results which prove that the vesicle reaction to a variation of the
external parameters may not be analytical. In section 4 we have shown that an O(ε) relative
variation in the vesicle area may induce either an O(ε) or an O(

√
ε) relative variation in

the shape function, depending on the permeability properties of the vesicle and the aqueous
solution that surrounds it.

The present analytical study is being currently completed by a numerical study [25], which
detects how the presence of an embedded inclusion modifies the phase diagrams describing
the vesicle topology, and under which conditions it anticipates budding phenomena.
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Appendix A. Properties of Legendre functions

The Legendre functions of the first and second kind (respectively denoted as Pν(s) and Qν(s))
are the solutions of the linear differential equation

(1 − s2)y ′′(s) − 2sy ′(s) + ν(ν + 1)y(s) = 0.

The Legendre functions of the first kind are regular when s → 1− (with Pν(1) = 1), while the
Legendre functions of the second kind are singular close to both s = ±1. The properties we
use in this paper are the following (see [32], sections 8.2 and 8.5).

For any ν ∈ R and s ∈ [−1, 1]

P− 1
2 −ν(s) = P− 1

2 +ν(s) (A.1)

Pν+1(s) = 2ν + 1

ν + 1
sPν(s) − ν

ν + 1
Pν−1(s) (ν �= −1) (A.2)

(1 − s2)P ′
ν(s) = νPν−1(s) − νsPν(s). (A.3)

Equations (A.2) and (A.3) imply∫
Pν(cos ϑ) sin ϑ dϑ = −

∫
Pν(s) ds = Pν−1(cos ϑ) −cos ϑPν(cos ϑ)

ν + 1
(ν �= −1).

(A.4)

For any ν ∈ R
+\N, the Legendre functions of the first kind admit the following asymptotic

expansion:

Pν(−1 + ε) = − lg(ε/2) + 2γ + �(−ν) + �(ν + 1)

�(−ν)�(ν + 1)
+ O(ε lg ε) as ε → 0+ (A.5)

where �, � and γ respectively denote the Euler gamma function, the digamma function and
Euler’s constant.
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Appendix B. Third order expansion of the free energy

The derivation of the third-order term in the free-energy expansion requires a third-order
expansion of the shape function. Thus, (4.2) has to be replaced by

r(ϑ) = r0
(
1 +

√
ε 1

2
(ϑ) + ε1(ϑ) + ε

3
2  3

2
(ϑ) + o

(
ε

3
2
))

.

However, the higher-order terms 1 and  3
2

turn out to enter the free-energy expansion only
through combinations that can be related to integrals of  1

2
and its derivatives by making use

of the area and volume constraints, as already happens in the second-order expansion (see
(4.7)). More precisely, the third-order expansion of the constraints yields∫ ϑf

0
 3

2
(ϑ) sin ϑ dϑ + 2

∫ ϑf

0
1(ϑ) 1

2
(ϑ) sin ϑ dϑ = −1

3

∫ ϑf

0
3

1
2
(ϑ) sin ϑ dϑ. (B.1)

By using (B.1) it is long but straightforward to prove that

F(ps,st) = κ(ς0 − 1)2 A0

r2
0

+ κς0(ς0 − 1)
�A

r2
0

− κς0
r0�A − 2�V

r3
0

+ F (2) + F (3)

+ o(r0�A,�V )3/2

with

F (3)

(ps,st) = F(ψ0) + ς0G(ψ0)

where

F(ψ0) = 2π

∫ ϑf

0

[
νk(1 + νk)

3
3

1
2
− cos 2ϑ

1 −cos 2ϑ
 1

2
′2

1
2

+
cot ϑ

6
′3

1
2

− 1

2
 1

2
′′2

1
2

]
sin ϑ dϑ

G(ψ0) = 2π

∫ ϑf

0

[
 1

2
′2

1
2

− 2

3
3

1
2

+
1

3
′3

1
2

cot ϑ

]
sin ϑ dϑ.

The functions f, g introduced in (4.11) are related to F,G through

f (ψ0) = F(ψ0) sgn(C3)

(
r0�A − 2�V

r3
0

)− 3
2

(B.2)

g(ψ0) = G(ψ0) sgn(C3)

(
r0�A − 2�V

r3
0

)− 3
2

. (B.3)
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[26] Delaunay C 1841 Sur la surface de révolution, dont la corbure moyenne est constante J. Math. Pures Appl. 6

309–15
[27] Naito H, Okuda M and Zhong-Can O-Y 1995 New solutions to the Helfrich variation problem for the shapes of

lipid bilayer vesicles: beyond Delaunay’s surfaces Phys. Rev. Lett. 74 4345–8
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